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Titanium diboride-silicon composite was fabricated by innovative method of self-propagating high-temperature 
synthesis (SHS) from the mixtures of titanium, magnesium dodecaboride and silicon in constant pressure reactor 
in argon atmosphere at 0.5-2 MPa pressure. The key influence of initial mixture composition, sample geometry 
and external gas pressure on the combustion features, products phases and microstructure characteristics were 
examined. Direct fabrication of fully dense TiB2-(30-44)wt.%Si composite with improved physico-mechanical 
properties was performed using spark plasma sintering (SPS) at a relatively low temperatures (1250-1350 °C) with 
a dwelling time of 3 min at pressure of 50 MPa. Erosive wear behavior of the composites was studied both at room 
and elevated temperatures. The highest erosion resistance against silica particles impact was demonstrated by 
composite with the lowest silicon content.
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1. Introduction  

Titanium diboride (TiB2) as one of the extremely hard and 
chemically stable ceramic materials with metallic conductivity and 
high corrosion resistance is considered as a potential candidate 
for cutting tools, electric devices, self-draining inert cathodes in 
aluminium electrolysis cells and many other fields of industry 
demanding materials for high temperature structural and wear-
resistant applications [1-6]. Among numerous promising properties 
of TiB2 there are high melting point (3225 °C), relatively low 
density (4.5 g·cm-3), high hardness (25 GPa) and Young’s modulus 
(510 - 575 GPa), combined with remarkable high-temperature 
strength [1,6]. Neutron absorption capability of boron makes TiB2 
one of the best choices for control rod material exploited in high 
temperature nuclear reactors. Much wider application of this 
material is inhibited by poor sinterability due to a low self-diffusion 
coefficient, an exaggerated grain growth at high temperature, and 
formation of oxide layer on the surface of particles combined 
with a low fracture tolerance of the final product [1,2,4,7-9]. 
Fast anisotropic grain growth produces high internal stresses 
resulting in the onset of spontaneous severe microcracking during 
cooling from sintering temperatures. In order to meet this threat, 
a new generation of materials, namely multi-element composite 
materials with titanium diboride as a constituent element, are 
expected to be developed. Binderless TiB2 can traditionally be 
densified at temperatures over ~2100  °C generally assisted by 
a high pressure during sintering. Wang et al. have prepared TiB2 

ceramic of nearly full density by hot pressing at 1900 °C under 30 
MPa pressure [10]. Konigshofer et al. have reported densities as 
high as 99.9% by hot pressing at high temperature 1800 °C and 
45 MPa pressure [11]. Improvement in densification conditions 
of TiB2 can be achieved by liquid phase sintering with metallic 
additives such as Ni, Cr, Fe, etc. [12-15]. Particular attention was 
being paid to Al [14], Cu or Fe as a toughening binder [16-18] 
attempting to get systems with a high specific modulus. However, 
the presence of a metallic binder leads to degradation in some 
mechanical properties of TiB2-based cermets especially at a high 
temperature. The non-metallic additives can be used to improve 
sinterability without deterioration of boride’s properties. 
Recently, hard titanium boride-based ceramic thin films alloyed 
with silicon (Si) have been attracted continuing research attention 
in attempt to take the advantage of excellent wear and high-
temperature oxidation resistance (up to 1000  °C), which are 
particularly important for cutting tool applications [1,19]. It 
was shown that alloying of transition-metal boride coatings 
with Si reduces crystallinity and/or promotes a nanocrystalline 
structure to improve thermal stability and oxidation resistance 
[20]. Composite of TiB2 and Si promotes the high protective 
performance combined with the structural strength giving an 
optimum combination of hardness and ductility.
TiB2 based ceramics can be prepared by carbothermic reduction 
of mixed oxides of boron and titanium, reduction of titanium 
oxide by boron carbide and carbon, reduction of mixed oxides by 
metals like aluminium, silicon, magnesium, etc., electrochemical 
synthesis, sol-gel and solid state reactions, or synthesis from 
the elements by heating or mechanical alloying [21-24]. The 
application of high temperatures, the long reaction times and 
the use of complicated equipment are the main restrictions for 
an efficient fabrication of TiB2 based powders. Self-propagating 
high-temperature synthesis (SHS) designated as an alternative 
energy-saving method for the large scale production of many 
compounds, particularly TiB2 based composites [25,26]. SHS 
has a number of advantages over other approaches, such as 
low energy consumption, high efficiency, simple processing and 
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equipment, and no need for extra processing to obtain product 
with controlled particle size and distribution to be able ready for 
sintering. For the preparation of TiB2-Si composite by SHS, a highly 
exothermic combustion reaction can be performed in the Ti-B-Si 
mixture, and the reaction propagates in a self-sustaining manner 
by utilizing the thermal energy released from the combustion 
reaction of elementary powders. However, there is still a lack of 
knowledge on determination of optimum and reliable sintering 
parameters of combustion synthesized TiB2/Si powders.
The sinterability of TiB2/Si is the key issue for its technical 
application and is also limited by purity and particle size, which 
play a crucial role during sintering. On the other hand, to the 
best of our knowledge, the reports concerning the sintering of 
combustion synthesized TiB2/Si ceramics using SPS technique are 
absent.
This study focuses on the preparation of TiB2-Si composite 
powder by SHS method from the exothermic Ti-MgB12-Si mixture 
and addresses the issue of relatively low temperature spark 
plasma sintering (SPS) of TiB2-Si composite material. SHS process 
optimization based on both thermodynamic consideration and 
experimental procedure enables to obtain the product with 
tailored granulometric composition and purity. 

2. Experimental

2.1. Materials preparation by SHS

The precursors are listed in Table 1. Magnesium dodecaboride 
was used as a widely available source of boron. The green mixture 
of reactants was homogenized in a ceramic mortar for 15 minutes, 
and the cylindrical samples with 2.1-2.3 g·cm-3 density, height 
of 30-35 mm, 20 mm in diameter were prepared by uniaxial 
pressing of 50 kN. Two C-type tungsten-rhenium thermocouples 
(wire diameter 0.2 mm) previously covered with a thin layer of 
boron nitride were placed into holes drilled beforehand in each 
sample to record temperature-time profiles of the combustion 
process. 
The prepared samples were positioned in a reaction chamber 
CPR‑3l. The reactor was sealed, evacuated, purged with argon 
(purity 99.97%, oxygen content less than 0.02%) and filled 
with Ar to the pressure of 0.5-2 MPa. For the synthesis of pilot 
batches, a tubular reactor (CPR-3.5l) was exploited. To initiate 
the combustion reaction, the short-term annealing of tungsten 
coil (12 V, 1-2 s) positioned on the upper surface of a sample 
was employed. The maximum combustion temperature (Tc) for 
each sample was calculated as an average of maxima for two 
temperature profiles. The average value of combustion velocity 
is calculated by the following formula: Uc= L·t-1, where L - the 
distance between the thermocouples, t - the time distance between 
the thermocouple’s signals. The standard error of measurement 
for Tc and Uc were ± 20 °C and 5%, respectively. The combustion 
process was followed by crushing of the specimens into powders 
for further densification by SPS. 

2.2. SPS processing

To prepare the powder for SPS sintering, the SHS synthesized 
TiB2-Si composite material was ball milled for 30 min at a fixed 
rotation speed of 200 rpm using ZrO2 grinding media and the 
ball-to-powder weight ratio of 3:1. Subsequently the powder was 
sieved through a 60-mesh screen and green shaped to 45 mm-
pellet by linear pressing at 20 MPa. The composite powder was 
spark plasma sintered (KCE®-FCT HP D 10-GB, FCT Systeme 
GmbH, Germany) in vacuum (5·10-2 mbar) at temperatures of 
1250, 1300 and 1350 °C with simultaneous application of 10-50 
MPa (3-16 kN) pressure for a dwell time of 3 min. The heating 
rate employed was 100 °C·min-1 for ramp-up and the cooling rate 
was set up to ~200 °C·min-1.

2.3. High-temperature abrasive-erosive wear test

Erosion testing was conducted with the help of a centrifugal 
four-channel accelerator described in detail elsewhere [27]. Six 
kilograms of silica sand with mean size of 0.3 mm was used as 
erodent. For brittle ceramics, the maximum wear rate during 
erosion is mostly observed at impact angle between 75° and 90°; 
in contrast, the ductile metals have the highest wear rate at low 
angles of solid particle impingement (usually between 10° and 45°) 
[28,29]. Thus, for the spark plasma sintered TiB2‑(30‑40 wt.%) Si 
samples, the selected velocity of the particles was set to 80 m·s-1 at 
the impact angle 30°. Tests were performed successively at room 
temperature, 550 and 650 °C. The erosion rate was determined 
as volume loss of the target sample per mass of erodent particles 
(mm3·kg-1). The sample surface was polished with an abrasive 
paper to a surface roughness (Ra) of about 0.1 µm. To quantify the 
weight loss, the specimens were ultrasonically cleaned in ethanol 
and weighed before and after the test to the nearest 0.1 mg using 
GR-202 A&D Instruments balance. The tests were repeated at 
least three times and results were averaged.

2.4. Characterization

The density of sintered samples was measured by Archimedes 
technique (density kits Mettler Toledo ME204, Australia) using 
water as an immersion medium and phase composition was 
studied with the help of a Siemens Bruker D5005 X-ray analyser 
using a Philips X’Pert PRO diffractometer (40 mA, 40 kV, Cu 
Kα radiation, λ = 0.1542 nm, step size of 0.02°, PANalytical, 
Netherlands). Crystalline phases and their relative contents 
were estimated by Rietveld refinement method, which was 
performed by quantitative analysis of the phases detected with 
the corresponding XRD patterns. Microstructures and phase 
morphologies were examined using a field-emission scanning 
electronic microscope (Zeiss Evo MA15, Germany) equipped with 
energy dispersive spectroscopy (EDS). 
The Vickers microhardness (HV) and indentation fracture 
toughness were measured on the polished surface using hardness 
tester Indentec 5030 SKV applying a load of 98.1 N for 10 s.  

3. Results and discussion

3.1. Combustion

To establish suitable amount of the constituents for the preparation 
of the composite material, thermodynamic calculations were 
performed for the Ti-xMgB12-ySi system in a wide range of mole 
amounts of MgB12 and Si (x, y) and an ambient gas pressure 
0.5 MPa using “ISMAN-THERMO” software package [30]. The 
formation area for TiB2-Si system was prescribed depending 
on magnesium dodecaboride (up to 1/5 mol) and silicon 
(changes from 0 up to 4 mol) amounts corresponding to a wide 
temperature zone (1200-2800 °C), Fig. 1. At a lower amount of 
MgB12 (x<2/13 mol), apart from TiB2 and Si, titanium silicides 

Table 1. Characteristics of precursors.

No Precursor Particle 
size, µm

Mark Purity, 
%

1 Ti <40 PTM >99

2 B <1 B-99 99

3 Si <20 KR0 98.8

4 MgB12 (magnesium 
dodecaboride or polyboride)

<10 >98
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(TiSi, Ti5Si3) and titanium monoboride are also present in the 
condensed equilibrium product. When x>1/6 mol, there is free 
boron remaining in the final product. In terms of preparation of 
TiB2-Si composite powder, namely TiB2 core particles covered 
by molten silicon, x=1/6 and y=2 moles were chosen as the 
optimum amounts of MgB12 and silicon. On the other hand, at 
T>1400 °C, the emergence of titanium silicides was considered 
as a competitive process to TiB2 formation.
Combustion synthesis was performed based on thermodynamic 
calculations close to the moderate temperature area of possible 
TiB2/Si formation (~1430 °C). Combustion limit was achieved at 
mixture with n(Si)=2.75 regardless to the ambient gas pressure 
(0.1-2 MPa) and the relative density of the initial specimen (30-60 
wt.%).
The examination of combustion parameters for the Ti+MgB12+nSi 
mixtures demonstrated that combustion temperature (Tc) and 

Figure 1. Thermodynamic calculations in the Ti-MgB12-Si system, P=0.5 MPa.

Figure 2. Combustion parameters (Uc, Tc) in the Ti+1/6MgB12+nSi mixture depending on 
silicon amount (n), P(Ar)=0.5 MPa, d=20 mm, F=45 kN.

Figure 3. XRD patterns of the Ti+1/6MgB12+nSi mixtures depending on silicon amount (n), P(Ar)=0.5 MPa.

combustion velocity (Uc) were decreased with an increase 
of silicon amount (n) in the initial mixture. Thermal energy is 
consumed during silicon heating and melting, i.e. in most cases, 
silicon acts as an inert diluent without direct contribution to the 

self-sustaining combustion reaction 
leading to smooth decrease in Uc and Tc 
values, Fig. 2. At lower argon pressure 
(<1 MPa) TiSi2 formation was observed 
due to titanium-silicon interaction.
XRD analysis of the combustion 
product of Ti+1/6MgB12+nSi mixture 
evidenced the substantial effect of 
the amount of silicon in the initial 
mixture at a pressure of 0.5 MPa, Fig. 
3. The final product contains titanium 
diboride and silicon, when n=1.5-2 
moles; and trace amounts of titanium 
silicide, when n(Si)>2. According to the 
reaction stoichiometry in the presence 
of TiSi2, some amount of free boron 
(amorphous) should also be present 
in the combustion product, which, 
however, was not detected by XRD 
analysis. 
The influence of preliminary 
compression of the samples on 
the combustion parameters was 
insignificant; however, it manipulates 
the composition of the combustion 
product. After processing, the 

specimens with initial relative density ∆=35% contained TiB2, 
Si, TiSi2 and B. The specimens with density of above ∆>50% 
represented the targeted TiB2/Si composite material.
To reveal the influence of an inert gas pressure on the combustion 
parameters and product composition, the combustion experiments 
were conducted in the Ti+1/6MgB12+2Si system under 0.5‑2 
MPa argon pressure. Combustion wave propagated through 
the sample with 0.2-0.3 cm·s-1 average velocity at temperature 
of 1500-1600  °C. XRD analysis of the combustion product of 
Ti+1/6MgB12+2Si mixture showed that increasing pressure up 
to P>1 MPa allows to get rid of byproducts (TiSi2, B) and the 
combustion product contains solely titanium diboride and silicon, 
Fig. 4. Magnesium was not observed in the combustion products; 
however, the XRD analysis of condensed eliminations taken from 
the walls of the synthesis reactor showed the presence of some 
amount of Mg/MgO mixture.
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The samples (m=500 g of each) were synthesized in a pilot tubular 
reactor at optimum 1 MPa argon pressure using Ti+1/6MgB12+2Si 
mixture. The comparison of combustion thermograms of pilot 
batches (m=500 g) and small samples (m=20 g) is shown in Fig. 5. 
The formation of TiB2/Si agglomerated powder at the combustion 
temperature near to the melting point of silicon (Tc=1420-
1450 °C, Uc=0.1 cm·s-1) was confirmed by XRD analysis, Fig. 6a. 
Post-processing milling of specimens during 30 min resulted in 
preparation of the powder with around 1-3 µm particle size for 

Figure 4. XRD patterns of the combustion product of the Ti+1/6MgB12+2Si mixture vs. argon pressure.

Figure 5. Combustion thermograms of the Ti+1/6MgB12+2Si mixture, P(Ar) =1 MPa for the pilot batches (m=500 g, Vh1=20 °C·s-1) (a) and small samples  
(m=20 g, Vh2=300 °C·s-1) (b).

Figure 6. XRD pattern (a) and SEM image (b) of the combustion product of the Ti+1/6MgB12+2Si mixture, P(Ar)=1 MPa, after milling, t=30 min, 
r=200 rpm.

further densification by SPS, Fig. 6b.
Fig. 5 demonstrates that the combustion thermograms of the 
pilot samples, Fig. 5a, are significantly differ from the typical 
combustion thermograms of cylindrical samples, Fig. 5b, 
particularly in their heating and cooling rates (difference in order 
of tens) and dwelling time at a maximum temperature (about 1 
min. instead of few seconds). These provide favourable conditions 
for the complete conversion of reagents in the combustion and 
the post-combustion zones for the mass production.

(b)
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Figure 7. XRD patterns of a) SHS produced and b) SP sintered TiB2-Si composite 
(1300 °C, 50 MPa).

Figure 8. SEM images of samples sintered at (a) 1250 °C and 50 MPa,  
(b) 1300 °C and 50 MPa, (c) 1350 °C and 50 MPa, (d) 1350 °C and 10 MPa.

Figure 9. EDS mapping of SP-sintered sample at 1250 °C, 50 MPa (boron is not shown).

3.2. Spark plasma sintering

3.2.1.	Morphology and phase composition of spark plasma 
sintered samples

The microstructural analysis of the composites was performed to 
determine the dependence of the hardness on the microstructures. 
Fig. 7 displays the XRD patterns of combustion synthesized (a) 
and compacted (b) TiB2/Si composite. Apparently both the XRD 
patterns have the same characteristic peaks of TiB2 and Si, which 
asserts that there was no obvious chemical reaction between the 
components during the sintering procedure.  
Fig. 8 compares the microstructures of the composites containing 
44.0 and 30.4 wt.% of silicon and sintered at different 
temperatures. Microstructural analysis revealed that the TiB2 grains 
in all compositions had a predominantly rounded morphology 
and were distributed non-homogeneously throughout the silicon 
matrix. Moreover, non-uniform distribution of coarse and micro-
sized grains is recognizable. The sizes, calculated as an average of 
at least 100 grains, were of around 0.5 µm for fine grains and 3 
µm for coarse ones suggesting that TiB2 particles coalesce due to 
close contact during sintering. Particles of TiB2 in the sample (c) 
are in a submicron range and more spherical. EDS mapping of 
sintered TiB2-Si sample is demonstrated in Fig. 9.

3.2.2.	Density and hardness measurements of spark plasma 
sintered samples

The SHS synthesized TiB2+Si and TiB2+2Si composite powders 
were sintered using graphite crucibles 
in a range of temperatures from 1250 
to 1350 °C, which are lower than the 
melting points of the both constituents 
(Tm(Si) =1425 °C, Tm(TiB2) =3225 °C), 
Table 2. Near full density was achieved 
for all sintered samples.
Vickers’ hardness was determined 
from the average of at least ten indents 
and its values are summarized in Table 
1. The hardness of TiB2-Si composites 
varies from as low as 4 GPa up to 11 
GPa depending on the composition (Si 
content), microstructure evolution, as 
well as sintering conditions. As it was 
expected, the values increased with 

increasing TiB2 volume fraction and sintering temperature. The 
highest hardness value was recorded as 10.5 GPa for the TiB2+Si 
sample sintered at 1350 °C using pressure of 50 MPa.
Fracture toughness measured by different methods gives values 
in the range of 3.73-5.71 MPa·m1/2 for the TiB2-44wt.%Si samples 
sintered at 1300 °C (Table 3), which is comparable with TiB2‑SiC‑Si 
composite with representative value of 3.5 MPa·m1/2 in fracture 
toughness [31].
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Table 3. Fracture toughness of the TiB2-44wt.%Si samples.

Fracture toughness (MPa·m1/2)

Palmqvist Median Evans Method

5.71 4.62 3.73

Figure 10. Wear rate of TiB2-Si materials at different temperatures.

Figure 11. SEM images and EDS analysis of the surface of sample (a) eroded at 650 °C.

Table 2. Sintering conditions, density and hardness of SPS-ed TiB2-Si composites.

No Si content (wt.%) * T, °C Pressure, MPa Archimedes density, g/cm3 Relative density, % Vickers hardness, HV10, GPa

a 44.0 1250 50 3.166 99.25 4.6±0.35

b 44.0 1300 50 3.179 99.66 7.2±0.5

c 30.4 1350 50 3.475 99.00 10.5±0.5

d 44.0 1350 10 3.140 98.43 4.4±0.4

*Silicon content was determined after SPS according to Rietveld refinement method
*ρ(TiB2-44wt.%Si) = 3.19 g/cm3, ρ(TiB2-30wt.%Si) = 3.51 g/cm3 (calculated by ρ =100/(ω1/ρ1+ω2/ρ2)

material sintered at a relatively low pressure (sample d) is the 
least erosion resistant material, which can be explained by low 
hardness due to recognizable porosity [32].  
The wear performance of TiB2-Si is highly affected by the formation 
of SiO2 protective layer developed through oxidation of a binder 
phase at elevated temperatures. Si-based ceramic coatings are 
acknowledged as one of the most effective protection systems 
against oxidation attributed to the formation of SiO2 glassy thin 
layer of low oxygen permeability [33,34]. This fact may explain 
a better erosion resistance of TiB2-Si composite at temperature 
of 650  °C, which is higher than the oxidation point of silicon 
(570 °C).
The SEM examination and EDS analysis evidence the presence of 
areas corresponding to the formation of SiO2 and TiO2 and phases 
containing Mg and Fe incorporated from the erodent sand, Fig. 
11.
Fig. 12 displays SEM micrographs of the surfaces damaged by silica 
particles travelling under an impact angle of 30° at temperature 
650  °C. The surfaces exposed to the impact of the erodent 
particles are severely damaged and deficient with the binder 
silicon. However, SEM images reveal no apparent difference 
in morphology even at relatively high magnifications (2000x). 

Scars of recognizable plastic 
deformation and TiB2 clusters 
separation combined with 
depletion of the binder around 
boride result in weakening of 
the materials and removal of 
the unsupported boride. Similar 
mechanisms responsible for 
erosive wear are reported for 
either cemented carbides [28] 
or ZrC-based composites [32].

4. Conclusions

Combustion of the 
Ti+1/6MgB12+xSi mixture under 
0.5-2 MPa argon atmosphere 
and at temperature of 1420-
1450 °C enabled the preparation 
of TiB2/Si composite powder 
with 2 µm average particle 
size. Near full density titanium 
diboride-silicon compacts from 
combustion synthesized TiB2/
Si powders were prepared by 

Element content %
Spectrum

C O Si Ti Trace 
elements

Total

Spectrum 1 6.04 - 38.69 49.08 6.19 100.00

Spectrum 2 8.68 - 32.36 56.42 2.54 100.00

Spectrum 3 5.74 - 37.93 53.97 2.36 100.00

Spectrum 4 5.00 52.56 40.08 1.62 0.74 100.00

Spectrum 5 4.23 56.67 36.44 2.26 0.40 100.00

Spectrum 6 2.49 53.52 36.56 6.97 0.46 100.00

3.3. High-temperature erosion 

Fig. 10 shows the volumetric erosive wear rate of the spark 
plasma sintered TiB2/Si materials recorded during the centrifugal 
solid particle erosion test at impact angle of 30° and different 
temperatures. Despite of recordable difference in hardness, the 
materials containing 44% of silicon (samples a and b) demonstrate 
similar wear rate at temperatures of 20, 550, and 650 °C. Material 
with the lowest Si binder content (the silicon lean sample c) and 
expectedly with the highest hardness shows twofold higher wear 
resistance at both the room and elevated temperatures. The 
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spark plasma sintering (SPS) at relatively low temperatures of 
1250-1350 °C at pressure of 50 MPa. The material with the lowest 
content of silicon (~30wt.%) sintered at 1350 °C temperature and 
applied pressure of 50 MPa demonstrated the hardness value of 
~10.5 GPa and the least wear rate after erosion by silica sand in 
the temperature interval of 20-650 °C. 
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