ISSN 1121-7588
Bin Hu1, Paul Calvert2
1Argonne National Lab., Lemont, IL, USA
2New Mexico Tech, Socorro NM, USA

Abstract

Electroluminescence offers a versatile and simple route to printed light sources. A layer of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was inkjet printed onto polyethylene terephthalate (PET) mesh fabrics. The conductivity–transparency relationship is determined for textile-based conductors with different thicknesses of the printed PEDOT:PSS film. Alternating current powder electroluminescent devices were made by extrusion printing a layer of phosphor onto aluminum foil and then covering this with a fabric electrode. These devices are compared with indium tin oxide (ITO) glass electrodes on a similar device. Textiles coated with conducting polymers are a potential alternative to coated polymer films for flexible, transparent conductors. The strain response of these electrodes was improved by incorporating carbon nanotubes into the conductor. These bridge cracks that form on stretching.
€ 45,00

ico-info Address
  • Sede legale : via dei Bianchi n.19
  • 47121 - Forlì (FC)
  • email: info@technagroup.it
  • R.E.A. 297724
  • reg. Imp. Forlì-Cesena
  • Capitale sociale: EURO 20.000,00 interamente versato
© Techna Group s.r.l. - Faenza (RA) - Italy - VAT IT03368230409 Daisuke Ecommerce